Login

Adirondack RED WINGS
GP: 23 | W: 5 | L: 14 | OTL: 4 | P: 14
GF: 47 | GA: 77 | PP%: 14.63% | PK%: 88.64%
GM : Aaron Wynia | Morale : 60 | Team Overall : 69
Next Games #259 vs Rochester AMERICANS
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Game Center
Oshawa GENERALS
15-6-1, 31pts
4
FINAL
1 Adirondack RED WINGS
5-14-4, 14pts
Team Stats
W4StreakL4
8-3-0Home Record3-7-2
7-3-1Home Record2-7-2
8-2-0Last 10 Games1-7-2
3.41Goals Per Game2.04
2.45Goals Against Per Game3.35
22.22%Power Play Percentage14.63%
85.00%Penalty Kill Percentage88.64%
Adirondack RED WINGS
5-14-4, 14pts
3
FINAL
5 Orlando THUNDER
10-8-2, 22pts
Team Stats
L4StreakW4
3-7-2Home Record5-4-1
2-7-2Home Record5-4-1
1-7-2Last 10 Games6-3-1
2.04Goals Per Game3.20
3.35Goals Against Per Game3.15
14.63%Power Play Percentage14.00%
88.64%Penalty Kill Percentage89.13%
Adirondack RED WINGS
5-14-4, 14pts
Day 55
Rochester AMERICANS
7-11-4, 18pts
Team Stats
L4StreakOTL2
3-7-2Home Record5-4-3
2-7-2Away Record2-7-1
1-7-2Last 10 Games4-4-2
2.04Goals Per Game2.55
3.35Goals Against Per Game2.55
14.63%Power Play Percentage21.43%
88.64%Penalty Kill Percentage76.19%
Adirondack RED WINGS
5-14-4, 14pts
Day 58
Wyoming COWBOYS
15-5-4, 34pts
Team Stats
L4StreakL1
3-7-2Home Record7-3-2
2-7-2Away Record8-2-2
1-7-2Last 10 Games7-3-0
2.04Goals Per Game3.54
3.35Goals Against Per Game3.54
14.63%Power Play Percentage23.64%
88.64%Penalty Kill Percentage90.91%
Anaheim DUCKS
11-10-2, 24pts
Day 63
Adirondack RED WINGS
5-14-4, 14pts
Team Stats
L1StreakL4
3-5-1Home Record3-7-2
8-5-1Away Record2-7-2
6-3-1Last 10 Games1-7-2
3.26Goals Per Game2.04
3.39Goals Against Per Game2.04
26.92%Power Play Percentage14.63%
78.26%Penalty Kill Percentage88.64%
Team Leaders
Joffrey LupulGoals
Joffrey Lupul
10
Nail YakupovAssists
Nail Yakupov
13
Nail YakupovPoints
Nail Yakupov
19
Luke WitkowskiPlus/Minus
Luke Witkowski
2
Joni OrtioWins
Joni Ortio
2
Joni OrtioSave Percentage
Joni Ortio
0.889

Team Stats
Goals For
47
2.04 GFG
Shots For
704
30.61 Avg
Power Play Percentage
14.6%
6 GF
Offensive Zone Start
37.5%
Goals Against
77
3.35 GAA
Shots Against
729
31.70 Avg
Penalty Kill Percentage
88.6%%
5 GA
Defensive Zone Start
40.7%
Team Info

General ManagerAaron Wynia
CoachPat Quinn
DivisionEast Coast Division
ConferenceEASTERN Conference
CaptainJoffrey Lupul
Assistant #1Derek Dorsett
Assistant #2


Arena Info

Capacity4,794
Attendance4,794
Season Tickets479


Roster Info

Pro Team29
Farm Team21
Contract Limit50 / 55
Prospects9


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name #C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary
1Nail Yakupov (R)0XX100.006711749065868878697378736825327160720221650,000$
2Stephen Weiss0XX100.008024919793858462746574447579812660710321850,000$
3Cody McLeod0XX100.0090785171897578687075566659646441607003221,000,000$
4Roman Horak0X100.003538492637986739083726763172734607002542,500,000$
5Jiri Tlusty0X100.006317838577798175856674666834414560690284850,000$
6Evgeny Grachev0XX100.009427997096766468716964756221301056690254750,000$
7Paul Byron0XXX100.00225847957839968767461816931384360680264950,000$
8Sean Avery0XX100.009055568773677362736754716344511942680351750,000$
9Jeff Petry0X100.0069367588787893713465397544424755607302831,599,000$
10Keith Aulie0X100.009768707399756573375529794626331060730261872,000$
11T.J. Brennan0X100.00804678798579767838663781512130360730261774,000$
12Jordie Benn0X98.007137808479788470366635773933402960720281898,000$
13Steven Kampfer0X100.005929788372798373366031814524321960700281869,000$
14Andy Welinski (R)0X100.005724858173758465356429844113232460690221650,000$
15Joakim Ryan (R)0X100.00425809063799566346932824217274360690221650,000$
16Nick Seeler (R)0X100.005725718175748666356328854015253060690221650,000$
17Carl Dahlstrom (R)0X100.00651682838869676535662582389193660690203750,000$
Scratches
1Joffrey Lupul (C)0XX96.0056399395897276706971745667717545607103211,936,000$
2Justin Williams0X100.0065219493847488516954536367949952606803421,618,000$
3Derek Dorsett (A)0X100.007644588567799968675561725734404160670291751,000$
4Justin Dibenedetto0X100.005850828179909971766269648314243606702521,353,000$
5Manny Malhotra0XX100.0067419770896767598269616462828137606703611,201,000$
6Luke Witkowski0X100.0085617273847975697255577962192925606602521,845,000$
7Blake Geoffrion0X100.00561977857676946581506068651828460640281827,000$
8Justin Bailey (R)0X100.006121828382697464704754715710193760620203750,000$
9John Negrin0X100.006536717472738459336228693820103606502612,000,000$
TEAM AVERAGE99.77663279837977826860645172573440305969
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name #CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPAgeContractSalary
1Joni Ortio0100.00939986789493727272918538385660770243846,000$
2Rick DiPietro0100.00858080788781807981908347446760760342850,000$
Scratches
1Reto Berra0100.00777876878681737373767631314260710281650,000$
TEAM AVERAGE100.0085868181898575757586813938556075
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Pat Quinn71908988778565CAN7333,400,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Nail YakupovAdirondack RED WINGS (DET)LW/RW1861319-94046257417458.11%1138021.13123613000001044.93%138228101.0000000103
2Joffrey LupulAdirondack RED WINGS (DET)LW/RW2310515-1520423710620579.43%1048421.081238320003401052.38%423813010.6212000111
3Roman HorakAdirondack RED WINGS (DET)C2341115-164024767721465.19%1246720.342246330003390156.71%4992011000.6401000010
4Jiri TlustyAdirondack RED WINGS (DET)C235813-84036627223436.94%1447220.560113310004350052.78%413169000.5500000001
5Stephen WeissAdirondack RED WINGS (DET)C/LW236713-100042437622367.89%849321.441015300003340058.33%241811000.5302000111
6Cody McLeodAdirondack RED WINGS (DET)LW/RW2326828058343819275.26%334915.2101109000020033.33%673000.4602000001
7Paul ByronAdirondack RED WINGS (DET)C/LW/RW20145-60014414416312.27%531915.95000114000020050.00%84117000.3100000000
8T.J. BrennanAdirondack RED WINGS (DET)D19055-20025361414160%1840421.30011027000026000%0214000.2500000000
9Justin DibenedettoAdirondack RED WINGS (DET)C623520038187911.11%26310.5800000000002048.48%3320001.5700000020
10Justin WilliamsAdirondack RED WINGS (DET)RW16224-157532253213156.25%1034221.43112321000001047.83%4686000.2300100100
11Jordie BennAdirondack RED WINGS (DET)D23033-168051421714180%4456724.67000031000135000%0822000.1101000000
12Luke WitkowskiAdirondack RED WINGS (DET)RW52132209794222.22%56112.27000000000000100.00%202000.9800000000
13Sean AveryAdirondack RED WINGS (DET)C/LW1421310027131691012.50%315911.3900000000000063.64%1155000.3800000100
14Jeff PetryAdirondack RED WINGS (DET)D22112-86039452719103.70%2953024.1200012500024000100.00%1319000.0800000000
15Derek DorsettAdirondack RED WINGS (DET)RW6202-1802271931410.53%49415.67000210000000150.00%624000.4300000001
16Keith AulieAdirondack RED WINGS (DET)D22022-172605445201570%2346921.36000120000012000%0119000.0900000000
17Evgeny GrachevAdirondack RED WINGS (DET)C/LW15112-70020231061210.00%324516.3500001000000140.00%1534000.1600000001
18Carl DahlstromAdirondack RED WINGS (DET)D18112-10061850220.00%421311.840000000000000%022000.1900000000
19Andy WelinskiAdirondack RED WINGS (DET)D18011-5006115200%11307.250000200009000%114000.1500000000
20Blake GeoffrionAdirondack RED WINGS (DET)C5000000010000%020.490000000000000%00000000000000
21Steven KampferAdirondack RED WINGS (DET)D23000-840284113790%2240817.76000125000133000%011400000000000
22Joakim RyanAdirondack RED WINGS (DET)D18000000100000%0231.310000000000000%00000000000000
23John NegrinAdirondack RED WINGS (DET)D5000020542010%05110.370000000000000%00100000000000
24Nick SeelerAdirondack RED WINGS (DET)D18000-100231030%2412.330000000000000%00200000000000
25Manny MalhotraAdirondack RED WINGS (DET)C/LW8000-5005119430%18510.6400000000000065.00%601200000000000
Team Total or Average4144775122-1438555976587042554166.68%234686416.586101637334000173155353.51%1381171182110.3618100559
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Rick DiPietroAdirondack RED WINGS (DET)63200.9163.032972015179920000518210
2Joni OrtioAdirondack RED WINGS (DET)1821240.8893.3110704059530201000.5006180011
3Reto BerraAdirondack RED WINGS (DET)10000.9502.7322001206000005000
Team Total or Average2551440.8973.24138960757292990062323221


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Acquired By Last Trade Date Force Waivers Waiver Possible Contract Contract Signature Date Force UFA Emergency Recall Type Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Salary Cap Year 2Salary Cap Year 3Salary Cap Year 4Salary Cap Year 5Salary Cap Year 6Salary Cap Year 7Salary Cap Year 8Salary Cap Year 9Salary Cap Year 10No Trade Year 2No Trade Year 3No Trade Year 4No Trade Year 5No Trade Year 6No Trade Year 7No Trade Year 8No Trade Year 9No Trade Year 10Link
Andy WelinskiAdirondack RED WINGS (DET)D221993-01-01Yes212 Lbs6 ft2NoNoN/ANoNo1FalseFalsePro & Farm650,000$65,000$45,281$No---------------------------NHL Link
Blake GeoffrionAdirondack RED WINGS (DET)C281988-01-01No195 Lbs6 ft2NoNoN/AYesYes1FalseFalsePro & Farm827,000$82,700$57,611$No---------------------------NHL Link
Carl DahlstromAdirondack RED WINGS (DET)D201995-01-01Yes231 Lbs6 ft4NoNoFree AgentNoNo32024-05-01FalseFalsePro & Farm750,000$75,000$52,247$No750,000$750,000$-------750,000$750,000$-------NoNo-------NHL Link
Cody McLeodAdirondack RED WINGS (DET)LW/RW321984-01-01No210 Lbs6 ft2NoNoFree Agent2024-05-01YesYes22024-05-24FalseFalsePro & Farm1,000,000$100,000$69,663$No1,000,000$--------1,000,000$--------No--------NHL Link
Derek DorsettAdirondack RED WINGS (DET)RW291986-01-01No182 Lbs6 ft0NoNoN/AYesYes1FalseFalsePro & Farm751,000$75,100$52,317$No---------------------------NHL Link
Evgeny GrachevAdirondack RED WINGS (DET)C/LW251990-01-01No231 Lbs6 ft4NoNoFree AgentNoNo42024-06-07FalseFalsePro & Farm750,000$75,000$52,247$No750,000$750,000$750,000$------750,000$750,000$750,000$------NoNoNo------NHL Link
Jeff PetryAdirondack RED WINGS (DET)D281987-01-01No201 Lbs6 ft3NoNoN/AYesYes3FalseFalsePro & Farm1,599,000$159,900$111,391$No1,599,000$1,599,000$-------1,599,000$1,599,000$-------NoNo-------NHL Link
Jiri TlustyAdirondack RED WINGS (DET)C281988-01-01No205 Lbs6 ft0NoNoFree AgentYesYes42024-05-23FalseFalsePro & Farm850,000$85,000$59,213$No850,000$850,000$850,000$------850,000$850,000$850,000$------NoNoNo------NHL Link
Joakim RyanAdirondack RED WINGS (DET)D221993-01-01Yes185 Lbs5 ft10NoNoN/ANoNo1FalseFalsePro & Farm650,000$65,000$45,281$No---------------------------NHL Link
Joffrey LupulAdirondack RED WINGS (DET)LW/RW321983-01-01No206 Lbs6 ft1NoNoN/AYesYes1FalseFalsePro & Farm1,936,000$193,600$134,867$No---------------------------NHL Link
John NegrinAdirondack RED WINGS (DET)D261989-01-01No202 Lbs6 ft2NoNoN/AYesYes1FalseFalsePro & Farm2,000,000$200,000$139,326$No---------------------------NHL Link
Joni OrtioAdirondack RED WINGS (DET)G241991-01-01No190 Lbs6 ft1NoNoN/ANoNo3FalseFalsePro & Farm846,000$84,600$58,935$No846,000$846,000$-------846,000$846,000$-------NoNo-------NHL Link
Jordie BennAdirondack RED WINGS (DET)D281987-01-01No204 Lbs6 ft1NoNoN/AYesYes1FalseFalsePro & Farm898,000$89,800$62,557$No---------------------------NHL Link
Justin BaileyAdirondack RED WINGS (DET)RW201995-01-01Yes214 Lbs6 ft4NoNoFree AgentNoNo32024-05-01FalseFalsePro & Farm750,000$75,000$52,247$No750,000$750,000$-------750,000$750,000$-------NoNo-------NHL Link
Justin DibenedettoAdirondack RED WINGS (DET)C251990-01-01No198 Lbs6 ft0NoNoN/ANoNo2FalseFalsePro & Farm1,353,000$135,300$94,254$No1,353,000$--------1,353,000$--------No--------NHL Link
Justin WilliamsAdirondack RED WINGS (DET)RW341981-01-01No184 Lbs6 ft1NoNoN/AYesYes2FalseFalsePro & Farm1,618,000$161,800$112,715$No1,618,000$--------1,618,000$--------No--------NHL Link
Keith AulieAdirondack RED WINGS (DET)D261989-01-01No231 Lbs6 ft5NoNoN/AYesYes1FalseFalsePro & Farm872,000$87,200$60,746$No---------------------------NHL Link
Luke WitkowskiAdirondack RED WINGS (DET)RW251990-01-01No217 Lbs6 ft2NoNoN/ANoNo2FalseFalsePro & Farm1,845,000$184,500$128,528$No1,845,000$--------1,845,000$--------No--------NHL Link
Manny MalhotraAdirondack RED WINGS (DET)C/LW361980-01-01No207 Lbs6 ft2NoNoN/AYesYes1FalseFalsePro & Farm1,201,000$120,100$83,665$No---------------------------NHL Link
Nail YakupovAdirondack RED WINGS (DET)LW/RW221993-01-01Yes191 Lbs5 ft10NoNoN/ANoNo1FalseFalsePro & Farm650,000$65,000$45,281$No---------------------------NHL Link
Nick SeelerAdirondack RED WINGS (DET)D221993-01-01Yes201 Lbs6 ft2NoNoN/ANoNo1FalseFalsePro & Farm650,000$65,000$45,281$No---------------------------NHL Link
Paul ByronAdirondack RED WINGS (DET)C/LW/RW261989-01-01No160 Lbs5 ft9NoNoFree AgentYesYes42024-05-24FalseFalsePro & Farm950,000$95,000$66,180$No950,000$950,000$950,000$------950,000$950,000$950,000$------NoNoNo------NHL Link
Reto BerraAdirondack RED WINGS (DET)G281987-01-01No217 Lbs6 ft4NoNoN/AYesYes1FalseFalsePro & Farm650,000$65,000$45,281$No---------------------------NHL Link
Rick DiPietroAdirondack RED WINGS (DET)G341981-01-01No190 Lbs6 ft1NoNoFree AgentYesYes22024-05-23FalseFalsePro & Farm850,000$85,000$59,213$No850,000$--------850,000$--------No--------NHL Link
Roman HorakAdirondack RED WINGS (DET)C251990-01-01No170 Lbs6 ft0NoNoFree AgentNoNo42024-05-22FalseFalsePro & Farm2,500,000$250,000$174,157$No2,500,000$2,500,000$2,500,000$------2,500,000$2,500,000$2,500,000$------NoNoNo------NHL Link
Sean AveryAdirondack RED WINGS (DET)C/LW351980-01-01No195 Lbs5 ft10NoNoFree AgentYesYes12024-06-07FalseFalsePro & Farm750,000$75,000$52,247$No---------------------------NHL Link
Stephen WeissAdirondack RED WINGS (DET)C/LW321983-01-01No193 Lbs5 ft11NoNoFree AgentYesYes12024-05-24FalseFalsePro & Farm850,000$85,000$59,213$No---------------------------NHL Link
Steven KampferAdirondack RED WINGS (DET)D281988-01-01No198 Lbs5 ft11NoNoN/AYesYes1FalseFalsePro & Farm869,000$86,900$60,537$No---------------------------NHL Link
T.J. BrennanAdirondack RED WINGS (DET)D261989-01-01No213 Lbs6 ft1NoNoN/AYesYes1FalseFalsePro & Farm774,000$77,400$53,919$No---------------------------NHL Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2927.17201 Lbs6 ft11.861,056,517$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Roman HorakEvgeny Grachev35122
2Stephen WeissJiri TlustyNail Yakupov35122
3Cody McLeodPaul ByronSean Avery15122
4Nail YakupovStephen Weiss15122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1T.J. BrennanJeff Petry35122
2Keith AulieJordie Benn35122
3Steven KampferCarl Dahlstrom15122
4Jordie BennSteven Kampfer15104
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Roman HorakNail Yakupov51122
2Stephen WeissJiri TlustyCody McLeod49122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Steven KampferT.J. Brennan51122
2Jeff PetryJordie Benn49122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Roman Horak51122
2Jiri TlustyStephen Weiss49122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Steven KampferJeff Petry51122
2T.J. BrennanJordie Benn49122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Roman Horak51122Steven KampferJeff Petry51122
2Jiri Tlusty49122Carl DahlstromJordie Benn49122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Roman Horak51122
2Jiri TlustyStephen Weiss49122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Steven KampferT.J. Brennan51122
2Keith AulieJordie Benn49122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Roman HorakNail YakupovT.J. BrennanJeff Petry
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Roman HorakNail YakupovT.J. BrennanJeff Petry
Extra Forwards
Normal PowerPlayPenalty Kill
Jiri Tlusty, , Roman HorakJiri Tlusty, Roman HorakJiri Tlusty
Extra Defensemen
Normal PowerPlayPenalty Kill
Jordie Benn, Steven Kampfer, T.J. BrennanJordie BennJordie Benn, Steven Kampfer
Penalty Shots
, Stephen Weiss, Cody McLeod, Roman Horak, Jiri Tlusty
Goalie
#1 : Joni Ortio, #2 : Rick DiPietro


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Anaheim DUCKS11000000413000000000001100000041321.000459008201913018924426992572232150.00%10100.00%029151856.18%30356253.91%14530148.17%439215458237492239
2Bridgeport ISLANDERS1000010001-11000010001-10000000000010.50000000820191181892442699167218000%10100.00%029151856.18%30356253.91%14530148.17%439215458237492239
3Fredericton EXPRESS2010010069-31010000046-21000010023-110.2506915008201915418924426997023654500.00%30100.00%029151856.18%30356253.91%14530148.17%439215458237492239
4Hershey BEARS1000000134-1000000000001000000134-110.50036900820191431892442699249031200.00%000%029151856.18%30356253.91%14530148.17%439215458237492239
5Indianapolis ICE11000000312110000003120000000000021.0003360082019142189244269935171222300.00%60100.00%029151856.18%30356253.91%14530148.17%439215458237492239
6Kalamazoo WINGS11000000211000000000001100000021121.000235008201913718924426994315443000%20100.00%029151856.18%30356253.91%14530148.17%439215458237492239
7New Haven NIGHTHAWKS3020000137-42010000124-21010000013-210.1673580082019182189244269999321473400.00%70100.00%029151856.18%30356253.91%14530148.17%439215458237492239
8Orlando THUNDER312000001014-41100000053220200000511-620.33310182800820191821892442699852268410330.00%3166.67%029151856.18%30356253.91%14530148.17%439215458237492239
9Oshawa GENERALS1010000014-31010000014-30000000000000.000123008201912118924426993314416000%20100.00%029151856.18%30356253.91%14530148.17%439215458237492239
10Owen Sound ATTACK1010000016-51010000016-50000000000000.00012300820191431892442699386423400.00%20100.00%029151856.18%30356253.91%14530148.17%439215458237492239
11PEI SENATORS1010000014-3000000000001010000014-300.00012300820191271892442699287431200.00%20100.00%029151856.18%30356253.91%14530148.17%439215458237492239
12Rochester AMERICANS21100000440110000004221010000002-220.5004590082019161189244269955216473133.33%30100.00%029151856.18%30356253.91%14530148.17%439215458237492239
13Salt Lake GOLDEN EAGLES1010000013-2000000000001010000013-200.00011200820191341892442699306228100.00%10100.00%029151856.18%30356253.91%14530148.17%439215458237492239
14Saskatchewan STAGS1010000035-21010000035-20000000000000.0003580082019137189244269945154272150.00%2150.00%029151856.18%30356253.91%14530148.17%439215458237492239
15Scottsdale HATTERS1010000015-4000000000001010000015-400.000123008201912618924426993812925300.00%2150.00%029151856.18%30356253.91%14530148.17%439215458237492239
16Seattle KRAKEN1010000024-21010000024-20000000000000.00023500820191381892442699328422000%30100.00%029151856.18%30356253.91%14530148.17%439215458237492239
17Wyoming COWBOYS1010000024-21010000024-20000000000000.000246008201912918924426993313830000%4250.00%029151856.18%30356253.91%14530148.17%439215458237492239
Total23514002024777-301237001012740-131127001012037-17140.30447751220082019170418924426997292349159741614.63%44588.64%029151856.18%30356253.91%14530148.17%439215458237492239
_Since Last GM Reset23514002024777-301237001012740-131127001012037-17140.30447751220082019170418924426997292349159741614.63%44588.64%029151856.18%30356253.91%14530148.17%439215458237492239
_Vs Conference1529002022953-24824001011726-9705001011227-1580.2672949780082019143118924426994481414637730413.33%23195.65%029151856.18%30356253.91%14530148.17%439215458237492239
_Vs Division725001021526-11421001011217-53040000139-670.500152338008201912001892442699231802417512216.67%12191.67%029151856.18%30356253.91%14530148.17%439215458237492239

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
2314L447751227047292349159700
All Games
GPWLOTWOTL SOWSOLGFGA
2351402024777
Home Games
GPWLOTWOTL SOWSOLGFGA
123701012740
Visitor Games
GPWLOTWOTL SOWSOLGFGA
112701012037
Last 10 Games
WLOTWOTL SOWSOL
170200
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
41614.63%44588.64%0
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
1892442699820191
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
29151856.18%30356253.91%14530148.17%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
439215458237492239


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
312Indianapolis ICE1Adirondack RED WINGS3WBoxScore
417Adirondack RED WINGS2Kalamazoo WINGS1WBoxScore
625Owen Sound ATTACK6Adirondack RED WINGS1LBoxScore
1044Rochester AMERICANS2Adirondack RED WINGS4WBoxScore
1152Adirondack RED WINGS2Orlando THUNDER6LBoxScore
1462Adirondack RED WINGS3Hershey BEARS4LXXBoxScore
1672Adirondack RED WINGS1New Haven NIGHTHAWKS3LBoxScore
1775New Haven NIGHTHAWKS2Adirondack RED WINGS1LXXBoxScore
2088Wyoming COWBOYS4Adirondack RED WINGS2LBoxScore
2298Adirondack RED WINGS0Rochester AMERICANS2LBoxScore
24109Seattle KRAKEN4Adirondack RED WINGS2LBoxScore
27124Adirondack RED WINGS1Scottsdale HATTERS5LBoxScore
28125Adirondack RED WINGS4Anaheim DUCKS1WBoxScore
30137Adirondack RED WINGS1Salt Lake GOLDEN EAGLES3LBoxScore
33152Adirondack RED WINGS2Fredericton EXPRESS3LXBoxScore
37170Fredericton EXPRESS6Adirondack RED WINGS4LBoxScore
38175Adirondack RED WINGS1PEI SENATORS4LBoxScore
41192Orlando THUNDER3Adirondack RED WINGS5WBoxScore
43202Bridgeport ISLANDERS1Adirondack RED WINGS0LXBoxScore
45211Saskatchewan STAGS5Adirondack RED WINGS3LBoxScore
49227New Haven NIGHTHAWKS2Adirondack RED WINGS1LBoxScore
51236Oshawa GENERALS4Adirondack RED WINGS1LBoxScore
52246Adirondack RED WINGS3Orlando THUNDER5LBoxScore
55259Adirondack RED WINGS-Rochester AMERICANS-
58273Adirondack RED WINGS-Wyoming COWBOYS-
63294Anaheim DUCKS-Adirondack RED WINGS-
65304Cleveland MONSTERS-Adirondack RED WINGS-
66313Adirondack RED WINGS-Orlando THUNDER-
68317Adirondack RED WINGS-Springfield THUNDERBIRDS-
71333Rochester AMERICANS-Adirondack RED WINGS-
72341Adirondack RED WINGS-Bridgeport ISLANDERS-
76362Adirondack RED WINGS-Oshawa GENERALS-
78372Kalamazoo WINGS-Adirondack RED WINGS-
80385Adirondack RED WINGS-Hershey BEARS-
81389Adirondack RED WINGS-Bridgeport ISLANDERS-
83401Newmarket SAINTS-Adirondack RED WINGS-
84411New Haven NIGHTHAWKS-Adirondack RED WINGS-
86420Adirondack RED WINGS-Rochester AMERICANS-
88427Rochester AMERICANS-Adirondack RED WINGS-
90438Hershey BEARS-Adirondack RED WINGS-
95461Indianapolis ICE-Adirondack RED WINGS-
97472Muskegon LUMBERJACKS-Adirondack RED WINGS-
98477Wyoming COWBOYS-Adirondack RED WINGS-
101493Newmarket SAINTS-Adirondack RED WINGS-
106518Adirondack RED WINGS-New Haven NIGHTHAWKS-
107523Cleveland MONSTERS-Adirondack RED WINGS-
111543Adirondack RED WINGS-Fredericton EXPRESS-
113552Adirondack RED WINGS-Cleveland MONSTERS-
114561Adirondack RED WINGS-Muskegon LUMBERJACKS-
117572Orlando THUNDER-Adirondack RED WINGS-
119584Adirondack RED WINGS-Indianapolis ICE-
121591Adirondack RED WINGS-PEI SENATORS-
122600Adirondack RED WINGS-Owen Sound ATTACK-
126616Scottsdale HATTERS-Adirondack RED WINGS-
128625Oshawa GENERALS-Adirondack RED WINGS-
129632Hershey BEARS-Adirondack RED WINGS-
131640Orlando THUNDER-Adirondack RED WINGS-
133649Adirondack RED WINGS-Kalamazoo WINGS-
134657Adirondack RED WINGS-Saskatchewan STAGS-
137673Springfield THUNDERBIRDS-Adirondack RED WINGS-
138678Adirondack RED WINGS-Muskegon LUMBERJACKS-
141691Bridgeport ISLANDERS-Adirondack RED WINGS-
142697Adirondack RED WINGS-Bridgeport ISLANDERS-
Trade Deadline --- Trades can’t be done after this day is simulated!
144708Hershey BEARS-Adirondack RED WINGS-
146718Adirondack RED WINGS-Hershey BEARS-
148725Adirondack RED WINGS-Newmarket SAINTS-
149736Adirondack RED WINGS-New Haven NIGHTHAWKS-
153751Adirondack RED WINGS-Salt Lake GOLDEN EAGLES-
154760Adirondack RED WINGS-Scottsdale HATTERS-
156769Adirondack RED WINGS-Seattle KRAKEN-
161792Salt Lake GOLDEN EAGLES-Adirondack RED WINGS-
163801Bridgeport ISLANDERS-Adirondack RED WINGS-
164806Adirondack RED WINGS-Hershey BEARS-
166815Seattle KRAKEN-Adirondack RED WINGS-
168823PEI SENATORS-Adirondack RED WINGS-
170835Owen Sound ATTACK-Adirondack RED WINGS-
171843Adirondack RED WINGS-Orlando THUNDER-
173858New Haven NIGHTHAWKS-Adirondack RED WINGS-
174862Rochester AMERICANS-Adirondack RED WINGS-
176872Adirondack RED WINGS-Bridgeport ISLANDERS-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Capacity23972397
Ticket Price7545
Attendance28,76428,764
Attendance PCT100.00%100.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueCapacityTeam Popularity
28 4794 - 100.00% 287,640$3,451,680$4794130

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Salaries CapCoaches Salaries
909,881$ 3,063,900$ 3,063,900$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
3,063,900$ 909,881$ 29 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
8,053,920$ 124 17,213$ 2,134,412$




Adirondack RED WINGS Players Stat Leaders (Regular Season)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Adirondack RED WINGS Goalies Stat Leaders (Regular Season)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Adirondack RED WINGS Career Team Stats

OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Adirondack RED WINGS Players Stat Leaders (Play-Off)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Adirondack RED WINGS Goalies Stat Leaders (Play-Off)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA