Priority | Type | Description |
---|---|---|
1 | | or OR | Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar |
2 | && or AND | Logical "and". Filter the column for content that matches text from either side of the operator. |
3 | /\d/ | Add any regex to the query to use in the query ("mig" flags can be included /\w/mig ) |
4 | < <= >= > | Find alphabetical or numerical values less than or greater than or equal to the filtered query |
5 | ! or != | Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (= ), single (' ) or double quote (" ) to exactly not match a filter. |
6 | " or = | To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query |
7 | - or to | Find a range of values. Make sure there is a space before and after the dash (or the word "to") |
8 | ? | Wildcard for a single, non-space character. |
8 | * | Wildcard for zero or more non-space characters. |
9 | ~ | Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query |
10 | text | Any text entered in the filter will match text found within the column |
Capacity | Ticket Price | Attendance | Attendance PCT | Income | Expenses | Estimate | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
# | Team | Level1 | Level2 | Level1 | Level2 | Level1 | Level2 | Level1 | Level2 | Home Games Left | Average Attendance - % | Average Income per Game | Year to Date Revenue | Capacity | Team Popularity | Players Total Salaries | Players Total Salaries Cap | Year To Date Expenses | Salary Cap Per Days | Salary Cap To Date | Players In Salary Cap | Players Out of Salary Cap | Estimated Season Revenue | Remaining Season Days | Expenses Per Days | Estimated Season Expenses |
1 | Farm Team 1 (NEW) | 2000 | 1000 | 35 | 15 | 0 | 0 | 0% | 0% | 0 | 0 - 0% | 0$ | 0$ | 3000 | 100 | 0$ | 0$ | 0$ | 0$ | 0$ | 0 | 0 | 0$ | 71 | 0$ | 0$ |
2 | Farm Team 10 (CLE) | 2000 | 1000 | 35 | 15 | 0 | 0 | 0% | 0% | 0 | 0 - 0% | 0$ | 0$ | 3000 | 100 | 0$ | 0$ | 0$ | 0$ | 0$ | 0 | 0 | 0$ | 71 | 0$ | 0$ |
3 | Farm Team 2 (NYB) | 2000 | 1000 | 35 | 15 | 0 | 0 | 0% | 0% | 0 | 0 - 0% | 0$ | 0$ | 3000 | 100 | 0$ | 0$ | 0$ | 0$ | 0$ | 0 | 0 | 0$ | 71 | 0$ | 0$ |
4 | Farm Team 3 (TOR) | 2000 | 1000 | 35 | 15 | 0 | 0 | 0% | 0% | 0 | 0 - 0% | 0$ | 0$ | 3000 | 100 | 0$ | 0$ | 0$ | 0$ | 0$ | 0 | 0 | 0$ | 71 | 0$ | 0$ |
5 | Farm Team 4 (QUE) | 2000 | 1000 | 35 | 15 | 0 | 0 | 0% | 0% | 0 | 0 - 0% | 0$ | 0$ | 3000 | 100 | 0$ | 0$ | 0$ | 0$ | 0$ | 0 | 0 | 0$ | 71 | 0$ | 0$ |
6 | Farm Team 5 (WPG) | 2000 | 1000 | 35 | 15 | 0 | 0 | 0% | 0% | 0 | 0 - 0% | 0$ | 0$ | 3000 | 100 | 0$ | 0$ | 0$ | 0$ | 0$ | 0 | 0 | 0$ | 71 | 0$ | 0$ |
7 | Farm Team 6 (HOU) | 2000 | 1000 | 35 | 15 | 0 | 0 | 0% | 0% | 0 | 0 - 0% | 0$ | 0$ | 3000 | 100 | 0$ | 0$ | 0$ | 0$ | 0$ | 0 | 0 | 0$ | 71 | 0$ | 0$ |
8 | Farm Team 7 (LAS) | 2000 | 1000 | 35 | 15 | 0 | 0 | 0% | 0% | 0 | 0 - 0% | 0$ | 0$ | 3000 | 100 | 0$ | 0$ | 0$ | 0$ | 0$ | 0 | 0 | 0$ | 71 | 0$ | 0$ |
9 | Farm Team 8 (ALB) | 2000 | 1000 | 35 | 15 | 0 | 0 | 0% | 0% | 0 | 0 - 0% | 0$ | 0$ | 3000 | 100 | 0$ | 0$ | 0$ | 0$ | 0$ | 0 | 0 | 0$ | 71 | 0$ | 0$ |
10 | Farm Team 9 (MIN) | 2000 | 1000 | 35 | 15 | 0 | 0 | 0% | 0% | 0 | 0 - 0% | 0$ | 0$ | 3000 | 100 | 0$ | 0$ | 0$ | 0$ | 0$ | 0 | 0 | 0$ | 71 | 0$ | 0$ |